### Human Interface Lab ヒューマンインターフェースLab



Research Map on Robotics Prosthesis (Japan)



## Input and Output Devices and Ethics for BMI Tokyo Univ. in Sub. A



Research Map on Robotics Prosthesis Alberta Edmonton Univ. University Hospital Balgrist Tokyo Univ. Imperial College UCL(University College London) Royal Natl. Orthopaedic **UEC** Hospital Cambridge Univ. Newcastle Univ. Iowa State Univ. Strasclyde Univ. Glasgow Chicago Reha. Hospital Washington Univ. North Western Univ. Mel born Univ. **Cleveland** FES Center Case Western Reserve Univ. Texas Univ. South Western Texas Hospital

#### 人と機械の融合を目指すシステム

#### パワーアシスト

#### 義手研究



2009 Hand for paralysis



2005 Hand for Adult



2006 Reflex walking assist



2010 Hand and Arm



2009 Hand for Child

## Principle of this Lab

### Intelligence is in our Body



We don't need so much intelligence and muscles only to walk.





Sept 2001

#### Instruments for BMI Studies



脳・神経・身体の活動に関する計測設備および、応用研究用の既存設備

## Spectrum of Researches

- Adaptable EMG Prosthetic Hand
- Power Assist Device
- Functional Electric Stimulation
- Reflex Walking Assist
- Power Suits
- Image Processing for Animals Tracking

## Robotics Approaches for EMG Prosthetic Hand with Bio-feed back



#### **Difficulties of EMG Classification**

Functional Relation among EMG and Motion



#### **Extraction of Human Intention by EMG**





**EMG Signal** 

Spectrum Analysis of Flexion of Thumb (Finger No.1)

## Spectrum Analysis of EMG Signal of Wrist and Finger Motion



The different motion produce different histogram of FFT spectrum

## Adaptable Mechanism for Human Characteristics of EMG signal



3ch EMG analysis classified 15 intentions of motions

### Link Mechanism of Robot Hand









**Quick Motion** 





**Power Motion** 

## Interference Wire Driven Mechanism and Control



### Demo System



Catch ball



Prototype by Tatsuhiro Nakamura in 2008



#### **ADL Test for Prosthetic Hand**



## **Conventional Studies**

|                            | EMG<br>Discrimination<br>of Motions | EMG<br>Channels | DOF  | Weight                                       | Grasping<br>Force |                                                                                                                                                       |
|----------------------------|-------------------------------------|-----------------|------|----------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| UEC(Tokyo Univ.)           | Hand 14                             | 3               | 13   | 1200g(Hand + Motor<br>+ Controller + Socket) | 55N               |                                                                                                                                                       |
| Hiroshima Univ.            | Hand 8                              | 7               | 1    | 270g(Hand Only)                              | 1.8N              | Under developing of Prosthetic hand ECoG based BMI control for upper arm                                                                              |
| Duke Univ.                 | Upper Arm 6                         | ECoG            | 3    | ?                                            | ?                 |                                                                                                                                                       |
| Cicago Riha                | Upper Arm 6                         | 6?              | 6    | ?                                            | ?                 |                                                                                                                                                       |
| Uta Univ                   | ?                                   | ?               | 16   | Heavy                                        | ?                 | Robot manipulator, rather than prosthetic hand                                                                                                        |
| Dean Kaman                 | No                                  | No              | 14   | 3600g                                        | ?                 | JoyStick control. Grasping power is likely to have a cup.                                                                                             |
| Canada + South Sampton(UK) | Hand 4                              | 2+(FSR)         | 6    | 400g(Hand Only)                              | 9.1N              |                                                                                                                                                       |
| Ottobock                   | Hand 2or4                           | 2               | 1or2 | 540g(Hand Only)                              | 160N              |                                                                                                                                                       |
| Genova                     | Hand 5                              | 2or3            | 16   | 1800g(Hand + Motor<br>+ Controller + Socket) | 70N               |                                                                                                                                                       |
| England                    |                                     |                 |      |                                              |                   |                                                                                                                                                       |
| i–LIMB                     | ?                                   | 2 (FSR)         | 6    | small508 gmedium<br>518 g                    | 8 kg~9.5kg        | Hand grasping and thumb rotation<br>control based on discrimination<br>by depending on EMG threshold<br>with time interval for mode<br>change control |

#### Need more Precise Control



## **Application for Child**

Congenital limbs deficient child (7 years old)





### Biofeedback using Phantom Sensation



### Biofeedback using Phantom Sensation



## f-MRI Analysis of Adaptation

Sensory motor coordination is necessary for confidential grasping. (Tactile Sensing is important.)

#### Adaptation vs Habituation

(Effect on the Coexistence of Man and Machine)



#### Input type BMI

(We can see how much intelligence do we need to manipulate prosthetic hand)



### Application of f-NIRS

SIMADU OMM-3000 by Ryu Kato



#### Power Assist Device for the Stroke Patient

(with Fukui Univ.)



#### Principle of Walking Assist by using FES

#### **Direct Stimulation on Muscle**





**Unnatural Recruitment** 

#### **Reflex Stimulation through Spine**





**Natural Recruitment** 

### Results of Reflex Walking Assist for Lower Lim Paralysis

| Fast Walking        | Slow Walking          |
|---------------------|-----------------------|
| 25m/33s = 0.76  m/s | 25  m/87s = 0.28  m/s |

37 years old Spinal L5, S1 injury When she was 10 years old

#### FES for Acute Hemiplegic Stroke patients

Case 1, cerebral infarction, BRS III (day 8) Day 10, before FES

Walk10[m]:

97.7[s]

61[step]

Day 10, after FES

Walk10[m]:

48.6[s]

46[step]

#### FES for Convalescent Hemiplegic stroke patients

Case 2, cerebral infarction, BRS III (day 36)

Normal Rehabilitation

Velocity:5 4s/10m

FES training

FES rehabilitation after 1 week

Velocity: 22s/10m

## Cybernetics

Cybernetics was defined by Norbert Wiener 1948, Cybernetics: Or Control and Communication in the Animal and the Machine. Paris, France: Librairie Hermann & Cie, and Cambridge, MA: MIT Press. Cambridge, MA: MIT Press



## Adaptable Mechanism for Human Intention of Motion



#### Conclusions

- New trend of brain science for neuro rehabilitation is started, engineers need to produce the robot which has intelligence to adapt human intention
- Machine function is growing from the traditional cybernetics to the integration of actuator, sensor, computer and human body by using biofeedback.
- Adaptable mechanism for biological signal will connect to human and Machine through biofeedback.
- Engineering application of barrier free technology is useful for physically, socially and mentally.